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Abstract

Uncertainty quantification is an increasingly important aspect of many areas of computational science, where the chal-
lenge is to make reliable predictions about the performance of complex physical systems in the absence of complete or reli-
able data. Predicting flows of oil and water through oil reservoirs is an example of a complex system where accuracy in
prediction is needed primarily for financial reasons. Simulation of fluid flow in oil reservoirs is usually carried out using
large commercially written finite difference simulators solving conservation equations describing the multi-phase flow
through the porous reservoir rocks. This paper examines a Bayesian Framework for uncertainty quantification in porous
media flows that uses a stochastic sampling algorithm to generate models that match observed data. Machine learning
algorithms are used to speed up the identification of regions in parameter space where good matches to observed data
can be found.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Uncertainty quantification is an increasingly important aspect of many areas of computational science.
Weather forecasting [18], global climate modelling, complex engineering designs such as aircraft systems,
all have needs to make reliable prediction and these predictions frequently depend on features that are hard
to model at the required level of detail [6].

Porous media flows, and specifically prediction of uncertainty in production of oil from oil reservoirs, is
another area where accurate quantification of uncertainties in predictions is important because of the large
financial investments made. In the oil industry, predictions of fluid flow through oil reservoirs are difficult
to make with confidence because, although the fluid properties can be determined with reasonable accuracy,
the fluid flow is controlled by the unknown rock permeability and porosity. The rock properties can be mea-
sured by taking samples at wells, but this represents only a tiny fraction of the total reservoir volume, leading
to significant uncertainties in fluid flow predictions.
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2006.01.026

* Corresponding author.
E-mail address: mike.christie@pet.hw.ac.uk (M. Christie).

mailto:mike.christie@pet.hw.ac.uk


144 M. Christie et al. / Journal of Computational Physics 217 (2006) 143–158
Predicting fluid flows through oil reservoirs is a challenging problem. The oil tends to be a complex mixture
of pure hydrocarbon components, with experimentally determined PVT properties. In general, the oil is
displaced towards producing wells by a cheaper fluid such as water or gas, although there are other more spe-
cialized ways of producing oil [1]. If gas is injected to displace the oil, there can be complex transfer of hydro-
carbon components between the oil and gas phases which significantly affects the displacement, and the
displacement is likely to be hydrodynamically unstable.

The major source of uncertainty for all displacements in porous media is lack of knowledge of the material
properties. The fluids flow through a porous matrix whose porosity (ability to store fluid) and permeability
(resistance to flow) are unknown. Both porosity and permeability vary across the reservoir, with variations
determined by the geological processes that deposited the reservoir and subsequent processes such as deposi-
tion and cementation of the rock grains. The most direct way to measure porosity and permeability is to take a
core sample while drilling a well – usually around a 3 in. length of rock whose properties are measured in the
laboratory. This means that the sampling for these fundamental properties that can vary dramatically across a
reservoir is very limited. It is also possible to use indirect methods such as logging which sample a greater,
although still extremely limited volume.

Fig. 1 shows an outcrop of reservoir rock illustrating some of the complexities involved in predicting fluid
flows. The horizontal distance across the outcrop is around 20 m – significantly smaller than typical interwell
distances of several hundred meters to kilometers. If we had drilled two wells, one at either end of the outcrop,
we would have to infer the details of the permeable layers visible in the centre of the picture indirectly, yet they
would clearly influence the fluid flow.

Predictions of reservoir scale fluid flows are frequently made with commercial finite difference codes. The
input to these codes is the fluid properties as measured in the laboratory, and the rock properties which have
to be inferred. The code can then be run with a given set of input data and the predictions are compared with
observed pressures and flow rates. Clearly, this is an inverse problem and the solution is non-unique.

2. Bayesian framework for UQ

A Bayesian framework is a statistically consistent way of updating our beliefs about a given set of models
given observed data. A schematic diagram showing the framework we use is shown in Fig. 2.

We start with a set of beliefs about the details of the reservoir description. This is likely to come from a
geological description of the way the reservoir was deposited. For example, a fluvial reservoir laid down by
Fig. 1. Outcrop of reservoir rock, Point Lobos State Park, CA (photo courtesy P Corbett, Heriot-Watt University).



Fig. 2. Framework for generating multiple history-matched models.
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an ancient river system, is likely to have a set of meandering channels with sinuosity, width, depth, etc that can
be bounded by studies of equivalent outcrops. From these beliefs we form a way of parameterising the reser-
voir description and a set of prior probabilities for these parameters. We sample a number of possible reservoir
descriptions from the prior and examine how well the predictions made using these reservoir descriptions fit
the data. The models that fit the data well are assigned higher probabilities, with the numerical values of the
probabilities given by Bayes rule. Bayes Theorem provides a formal way to update our beliefs about proba-
bilities when we are provided with information. The statement of Bayes Theorem is [24]:
pðmjOÞ ¼ pðOjmÞpðmÞR
M pðOjmÞpðmÞdm

. ð1Þ
The prior probability, p(m), contains initial probabilities for the model parameters. These initial probabilities
are chosen with limited prior knowledge about the reservoir available. At this stage the prior probabilities can
be fairly vague, but should not be too narrow in its range (see [12] for a discussion on choice of non-informa-
tive priors). Using Bayes theorem, the model is updated, giving a posterior probability, p(mjO), based on
observations O. The likelihood function, p(Ojm), is a measure of to what degree the observed and modelled
data differ. Computing the value of the likelihood is the key step in Bayesian analysis. The value of the like-
lihood comes from a probability model for the size of the difference between the observations and the simu-
lations. The probability model contains assumptions about the statistics of the errors, and the quality of the
uncertainty forecasts depends on the assumptions made in the likelihood.

The discrepancy – the difference between the observed value of some physical quantity and the simulated
value – can be expressed as [8]
discrepancy ¼ observed� simulated ð2Þ
¼ ðobserved � trueÞ � ðsimulated� trueÞ ð3Þ
¼ observed error� simulated error. ð4Þ
At any given time, the probability density of the discrepancy, which from Eq. (4) is given by the difference
between the measurement error and simulation error, is given by a convolution integral
pðxÞ ¼
Z

pmeasðyÞpsimðxþ yÞdy; ð5Þ
with the likelihood being given by the probability of the discrepancy being zero. This is a direct result of the
additive nature of simulation and measurement errors.

If we assume Gaussian statistics for the errors, we end up with a standard least squares formulation with
covariance matrix given by the sum of the measurement and solution error covariance matrices [25]. For this
case, the misfit (which in this paper always refers to the negative log of the likelihood) is given by
M ¼ 1

2
ðobs� simÞTC�1ðobs� simÞ. ð6Þ
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Eq. (6) assumes that mean errors are zero for both measurement error and simulation error. This is unlikely to
be the case for simulation error, in which case the mean simulation error must be included in Eq. (6). See [17]
for a detailed discussion of construction of simulation error models including mean error terms.

Fig. 3 shows the conceptual framework used in our history matching approach. The top left picture repre-
sents the reservoir – the details of which are unknown except at a limited number of samples. Hydrocarbons
have been produced from the reservoir and measurements have been taken of quantities such as pressures and
fluid rates (top right). Based on our knowledge of the reservoir, we decide on a mathematical model – for
example, black oil vs compositional, equation of state choices, and a parameterisation of the unknown aspects
of the model (bottom left). We then solve the equations using a reservoir simulator (bottom right), and this
introduces additional solution errors. We make inferences about the model parameters by comparing the
numerical solution with the observed data.

There are several reasons why we might not get an exact match with observations. First, observations are
subject to measurement error. This can take two forms: first there is the instrument accuracy – multiple obser-
vations of an identical physical value will usually yield close but not identical results; secondly, there is an
error introduced in the comparison of the measurement to the simulated value. For example, in measuring
bottom hole pressure, the pressure gauge may be above the perforations and will be measuring pressure at
a single point somewhere on the casing. The flow up the well is likely to be three dimensional and may well
be turbulent, so a simple 1D correction back to the datum depth will introduce uncertainties. A second reason
why we might not get an exact match with observations is due to errors in the simulations. These errors can
arise from multiple sources – for example a simulation is unlikely to be fully converged and will still have space
and time truncation errors. Perhaps more importantly, on any finite grid size there will always be sub-grid phe-
nomena that have been ignored. These are likely to be particularly important with coarsely gridded models.
The final reason why we might not get an exact match is that the choice of model or parameterisation excludes
predictions that agree with observations for any combination of parameters. In this case, the normalising con-
stant in Bayes Theorem will be close to zero, indicating that a more suitable choice needs to be made.

2.1. Sampling in high dimensional parameter space

For most history matching problems we will be looking at several tens up to hundreds of unknown history
matching parameters. Use of this number of problems creates a real challenge for any numerical method
because of the combinatorial explosion of ways of choosing different values of parameters that could give a
history match. Fig. 4 shows a plot of the resolution achieved in parameter space for a given number of
unknown parameters if uniform Monte-Carlo sampling is used. The x-axis shows the resolution in terms of
Fig. 3. Conceptual framework used in history matching.



Fig. 4. Resolution in parameter space with uniform sampling.
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the number of sampled points per parameter, and the y-axis is the number of unknown parameters. The shad-
ing represent the number of simulations to achieve that resolution. Since the CPU time of most reservoir sim-
ulation models ranges from 10 s of minutes for very simple small models to 24 h or more for large models, we
can see that, even with large linux clusters, it is impossible to get significantly greater resolution than two
points per axis for any reasonable number of parameters if we restrict ourselves to uniform sampling.

In general, misfit surfaces can have very complex structure. Fig. 5 shows a cross section of a misfit surface
from a simple three-parameter problem (the IC Fault Model [5] described later), and we can clearly see that
there are many local minima.

Since the misfit surface is used for posterior inference, the quality of sampling of the misfit surface deter-
mines the quality of our inference.

The complexity of the surface forces us to use adaptive sampling, so that the algorithm can concentrate its
sampling in regions of good fit, and the multiple minima force us to use stochastic algorithms rather than gra-
dient methods. This is primarily because we are making inference from all the point sampled – if we were seek-
ing only a single maximum likelihood solution, it would make sense to combine a gradient algorithm with a
stochastic search.
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Fig. 5. 1D Section of misfit surface showing multiple minima.
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2.2. Bayesian inference and the neighbourhood algorithm

In general, for posterior inference we are interested in integrals of the form
J ¼
Z

M
gðmÞPðmÞdm; ð7Þ
where g(m) is some function of the reservoir model output. Because we have to run an expensive forward mod-
el, we use Monte-Carlo integration to estimate the value of the integral. The Monte-Carlo estimate is given by
bJ ¼ 1

N

XN

k¼1

gðmkÞ
hðmkÞ

P ðmkÞ; ð8Þ
with h(mk) being the sampling density.
In the applications discussed in this paper, we will be sampling the parameter space irregularly using a

genetic algorithm [3]. Genetic Algorithms (GAs) are stochastic search and optimization techniques inspired
by Darwin’s theory of natural evolution. These algorithms are designed to search the parameter space by mim-
icking crossover, mutation and natural selection phenomena and employing a ‘‘survival of the fittest’’ strategy.
Since the 1970s, they have been used for a wide range of optimization problems, including those which have
complex objective functions with non-linearities or discontinuities [11]. In petroleum engineering research, the
primary studies involving GAs date back to the mid-1980 on pipeline optimization. Then, over the last two
decades the use of GAs has become more common in petroleum geology and engineering applications includ-
ing stochastic reservoir modeling [23], well placement optimization [9], reservoir characterisation and history
matching [19,22,7]. GAs are expected to be competitive on finding several minima in cases where the search
space is large and not perfectly smooth [16]. Therefore, they are suitable for generating multiple good-fitting
reservoir models in high dimensional parameter space to assess forecast uncertainties.

The use of a stochastic sampler means that we have to reconstruct the posterior probability density function
from a limited number of irregularly spaced samples. We chose to use the NAB (NA-Bayes) algorithm
described by Sambridge [21] which constructs a Voronoi mesh in parameter space, with the centre of each
Voronoi cell being one of the sample points, and assumes that the posterior probability density is constant
on each Voronoi cell. The NAB algorithm uses a Gibbs sampler to importance sample the posterior proba-
bility density, and so Eq. (8) becomes
bJ ¼ 1

N

XN

k¼1

gðmkÞ; ð9Þ
with the Gibbs sampler ensuring that h(mk) � P(mk).

3. Neural networks for response surfaces

It is important to be able to sample the misfit surface with adequate resolution, yet the number of simula-
tions required increases exponentially with the dimension of the parameter space. There are a number of fac-
tors that mean that the task of quantifying uncertainty is less intractable than might first appear from the
demands of fully resolving the misfit surface. Key amongst them is that it is rare for commercial or technical
decisions to depend sensitively on all the unknown parameters [6]. There are also a number of sampling tech-
niques, including Genetic Algorithms [3,5], and the Neighbourhood Algorithm [20] which adapt their sam-
pling to the structure of the misfit surface.

However, generation of multiple history-matched models is still an extremely computationally expensive
task using finite difference reservoir simulators. There are various ways to improve computational efficiency
for uncertainty assessment. Streamline simulators [2] can be used to improve the speed of the forward runs,
although it can be hard to quantify the errors introduced. Another approach is to use coarse simulation grids
from upscaled models [26], where again an appropriate simulation error model must be used if reasonable
results are expected. Alternative methods like experimental design can reduce the number of forward simula-
tion run but have difficulties in exploring complex non-stationary misfit surface patterns.
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In this paper, we examine an alternative approach to increase computing efficiency (reduce numerical cost)
without losing accuracy in uncertainty assessment. The key problem is to improve exploration of the param-
eter space and interpolation of the misfit surface without using numerous time consuming forward simula-
tions. Given a limited initial number of sampled models we aim to estimate the misfit surface with high
resolution using a data-driven interpolation algorithm. The rationale of this approach is to identify regions
of poor fit cheaply and save the expensive model runs for the good fitting regions of parameter space. The
NAB algorithm for posterior inference uses Voronoi interpolation of the misfit surface in the multi-dimen-
sional parameter space. However, there are a number of potential problems associated with this approach,
especially if the cost of the forward simulations means that the resolution is limited. In our case, we are using
the NAB algorithm with commercial reservoir simulators, and the CPU time for each forward model is several
orders of magnitude greater than the receiver function inversion problem for which NAB was developed and
tested. This means that our interpolation surface will in general be coarsely resolved.

The above problems motivate us to improve the present algorithm by combining it with an efficient inter-
polation model to obtain an accurate misfit surface at relatively low computer cost. Such problems are often
effectively solved with machine learning (ML) algorithms. The Artificial Neural Network (ANN) is a machine
learning algorithm which is well known and widely used in many fields. ANNs are data-driven – they depend
only on the data and learn from them, thus do not assume any predefined analytical or statistical dependence.
ANNs are very efficient at solving multi-dimensional interpolation problems, handling non-linearities and
complex noisy data patterns. More details on ANNs can be found in [10].

3.1. A brief recap of artificial neural networks

Artificial Neural Networks were introduced in the 1960s as alternative data-driven learning models. Since
then a broad field of Machine Learning (ML) algorithms has been developed and now unites data-driven and
related algorithms: neural networks, genetic algorithms, support vector machines, fuzzy logic, pattern recog-
nition, wavelets and many others. Among the advantages of neural networks are their ability to fit highly com-
plex and non-linear data, from which the dependencies and patterns cannot be distinguished. They are also
robust to outliers and noise in data. While neural networks are often described algorithmically, they can use-
fully be viewed as statistical models with parameters estimated from data [14]. Multi-layer perceptrons are well
known types of neural networks. A basic multi-layer perceptron (MLP) structure is shown in Fig. 6. The func-
tional form of the neural network is given by
yi ¼ b0 þ
Xk

j¼1

bjwðct
jxiÞ þ �i. ð10Þ
The model inputs (xi) are passed to the hidden neurons which operate on linear combinations of the model
inputs ðct

jxiÞ. w is the sigmoidal shaped basis function, and bj are the nodal weights. The number of inputs
depends on the number of parameters in the model. Hidden neurons can be arranged in one or two hidden
Fig. 6. Basic MLP structure: 3 inputs, 6 neurons in a single hidden layer, and 1 output.
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layers and the hidden layer in general is responsible for modeling non-linearity. The output neurons corre-
spond to the target functions that are being modelled. The output layer sums the signals from the hidden layer
and delivers the final prediction.

Multi-layer perceptrons are trained using a supervised learning rule – the backpropagation algorithm. The
backpropagation algorithm is an iterative algorithm designed to minimise the difference between the actual
output of the neural network and the desired output. It calculates the error measure and updates the weights
on all neurons. The recursive algorithm starts at the output neurons and works back to the first hidden layer
propagating the output errors backward (additional details can be found in [13,4]). One of the key tasks in
ANN modelling is to select representative training and test data sets for the training procedure. Usually,
the training set is used in MLP training (via back propagation) when the records from the data set are directly
exposed to the MLP inputs and outputs. The test data set is used to control the quality of the training pro-
cedure. According to the general theory of risk minimization, both training and test error decrease initially
once the training starts; the training error decreases gradually towards zero given an efficient optimization
algorithm, while the test error reaches its minimum and then goes up again (see Fig. 7 [13]). At this point
MLP starts losing its ability to generalise – to predict accurately data different from the training set, and such
overlearning (or overfitting) should be avoided.

4. Applications

4.1. The IC Fault Model

The IC Fault Model is an extremely simple three-parameter model set up by Carter [5] as a test example for
automated history matching. It has proved extremely difficult to history match, and one of the conclusions
published in [5] has been that the best history-matched model (from 159,000 models) is of limited use as a pre-
dictor. The geological model consists of six layers of alternating high and low permeability sands (Fig. 8). The
three high permeability layers have identical properties, and the three low permeability layers have a different
set of identical properties. The porosities of the high and low permeability layers are 0.30 and 0.15 respectively.
The thickness of the layers has an arithmetic progression, with the top layer having a thickness of 12.5 ft., the
bottom layer a thickness of 7.5 ft., and a total thickness of 60 ft. The width of the model is 1000 ft., with a
simple fault in the middle. There is a water injector well at the left-hand edge, and a producer well on the
right-hand edge. Both wells are completed on all layers, and operated at fixed bottom hole pressures. The sim-
ulation model is 100 · 12 grid blocks, with each geological layer divided into two simulation layers with equal
thickness, each grid block is 10 ft. wide. The well depth is 8325–8385 ft. The model has three unknown param-
eters for history matching: high and low permeability (khigh and klow) and the fault throw (h). Our prior model
has uniform distribution with ranges: khigh 2 [100,200], klow 2 [0,50] and h 2 [0, 60]. The IC Fault Model study
specified a point in the parameter space as the true parameter values: khigh = 131.6, klow = 1.3 and h = 10.4.



Fig. 8. IC Fault Model (Z. Tavassoli, Jonathan N. Carter, and Peter R. King, Errors in history matching, SPE 86883, 2004).
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The misfit was defined using a standard least squares model using the discrepancy between simulated and
observed oil and water production rates for the 3-year history-matching period. The standard deviation is pro-
portional to the observed data and is given by rp = 0.03 · obsp where p is the measured parameter (oil and
water production rates in this case). The likelihood used was the same as the original IC Fault Model study,
namely the exponential of the negative average misfit over times where the reservoir was producing, i.e.
exp(�M) where
M ¼ 1

no

Xno

i¼1

ðobso � simoÞ2i
2r2

o

þ 1

nw

Xnw

i¼1

ðobsw � simwÞ2i
2r2

w

. ð11Þ
Oil rate squared discrepancies are summed over the history matching period, while the water rate squared
discrepancies are summed over the interval from the start of water production to the end of the history match-
ing period.

4.2. Bayesian inference using direct simulation

Since one of the conclusions of the original study [5] was that the maximum likelihood model had no pre-
dictive value, we examined the use of stochastic sampling and Bayesian inference to put uncertainty bounds
around the maximum likelihood model. We used two stochastic algorithms to search parameter space for
models that fit the observed data well.

The first stochastic algorithm we used was a steady state Genetic Algorithm (GA) [3], which was the most
efficient GA for this particular problem. In a steady state GA a number of the best models in each generation
are retained and passed on to the next generation step. This provides more stable optimization and saving in
computational cost.

In the IC Fault Model, ‘‘convergence’’ of our steady state GA was achieved after generating an ensemble of
6000 models. For this application, ‘‘convergence’’ means that the GA started sampling in a relatively narrow
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range of parameter space. This ensemble retained only 328 relatively likely models (due to the nature of steady
state GA) from the 6000 samples. The high misfit models are discarded as the algorithm evolves the
population.

We also used the Neighbourhood Algorithm [20], which works by approximating the misfit surface in high
dimensions by constant values in a set of Voronoi cells around each sample location and then selectively refin-
ing the low misfit locations.

We then used the NAB code [21] described in Section 2.2 to determine the p10, p50, p90 values for the oil
and water rate time series. At each point in time, there is an 80% probability that the true value of oil or water
production rate lies between the p10, p90 bands shown. We compared these with inference from the full
159,000 models in the IC Fault Model database provided by Carter, and the results are shown in Fig. 9.
We are able to accurately capture the uncertainty bounds with a relatively low number of samples using a
choice of stochastic sampling algorithms.

4.3. Use of MLP to predict misfit surface

We examined three ways to use an MLP to estimate the misfit for given model parameters. The first way is
to use the MLP directly for misfit prediction. In this case the MLP structure is simple, with only a single
output neuron, and requires less training. The second and third ways obtain MLP predictions of production
variables (oil and water production rates) and evaluate the misfit based on their estimated values rather than
the exact rates from the reservoir simulator.

In general, the compute time required to generate an ensemble of models with adequate resolution of areas
of high probability is high. This observation motivates our use of MLP interpolation based on models gener-
ated early in the sampling process. We used the 246 low misfit models from the first 2000 model generation
steps in the GA run (one third of the total run time) to predict the misfit surface with increased resolution.

4.3.1. Direct prediction of misfit

In order to make direct predictions of the misfit, we created an MLP with 3 inputs (corresponding to the 3
model parameters) and 1 output (corresponding to the misfit). The data was initially split into training and test
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sets. This separation was performed by imposing a 3 · 3 · 3 · 3 grid in the four-dimensional space formed by
the three parameter values and the misfit. A number of points (184) were then sampled at random in each grid
cell to select the training set, with the remainder (62) forming the test set.

The number of hidden neurons was chosen to give good predictions of misfit without overfitting the
available data. We chose an MLP structure with 50 neurons in a single hidden layer, providing 200 connec-
tions in the MLP (between 3 input, 50 hidden and 1 output neurons). Given 184 training samples with 3
input data points for each sample (552 values) this provides approximately 3 misfit values per MLP connec-
tion. This ratio is justified due to the expected complexity of misfit surface. Slight variations in the number
of hidden neurons make no significant differences to the estimated misfit values. The size of the training
dataset should be larger than the number of the MLP connections(degrees of freedom), otherwise the net-
work would not be able to train but just reproduce the given values. If there are too few connections, the
MLP will be unable to represent complex structures in data. The training of the MLP was performed in two
steps: first, simulated annealing was used to find stochastically optimal starting weights for the second step:
Levenberg–Marquardt gradient optimization [15]. The data were scaled to [0.01,0.99] interval and the misfit
values were additionally log-transformed to mitigate the influence of extremely high values. According to
the usual practice, the root mean square error (RMSE) was taken as the training evaluation criterion. This
choice prevents overlearning when the MLP becomes able to reproduce only the training data and loses its
ability to generalise (predict independent test data). The trained MLP was used to find additional locations
with low misfits. After this procedure the model ensemble was enlarged by 923 models with MLP estimated
misfits, which were added to the initial 246 survived models to make more representative ensemble for the
inference stage.

4.3.2. Estimation of misfit using MLP prediction of production time series

The second way we used an MLP to compute the misfit estimates was to predict a time series of the pro-
duction variables and then use these to evaluate the misfit value. MLP can be used successfully for temporal
predictions. However, the MLP structure becomes more complicated as we need to take into account the addi-
tional time variable. Time can be incorporated into the MLP structure as an additional input parameter along
with the model parameters (perm levels and the throw). Two production history variables (oil and water rates)
become MLP outputs. In this case such MLP is trained based on the simulated production history (at 38 time
steps) for all GA generated models (246). Thus the training data ensemble is quite large over 9000 records
(which were split into 7703 training and 1401 test sets). An MLP with 50 hidden neurons in a single layer
was trained for a significantly longer time than the MLP for direct misfit predictions.

There are several problems with MLP modelling of the time series of oil and water rates. A set of rates for
different times are combined and presented to the MLP model which treats time as simply another parameter
similar to the geomodel parameters (permeability, throw). Hence, the MLP does not implicitly recognise the
effects of causality in the data. Another important draw back of this approach is a lack of physical meaning of
the predicted variables. Thus, for instance, water production should be constrained to be positive, and linked
to oil rate after breakthrough.

4.3.3. Generalised linear model for misfit prediction

The final approach we considered for modelling the production history time series to calculate the misfit
was to use a generalised linear model (GLM). In the IC Fault case study the production profiles for oil
and water rates are relatively simple and can be approximated by a combination of simple analytical functions
to produce physically more realistic production curves.

The GLM for oil rate was
qoðtÞ ¼ a1 logðtÞ þ b1t þ c1 t < t1;

qoðtÞ ¼ a2 t1 < t < t2;

qoðtÞ ¼ a3t þ b3 t > t2;

ð12Þ
with the parameters estimated by the MLP being (a1,a2,a3,b1,b3,c1, t1). The history period starts 1 month after
the start of production, so there is no problem with the log(t) term in Eq. (12).



Fig. 10. Time series and GLM predictions of water rate compared with direct simulation.
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Fig. 11. Scatterplot of direct misfit estimation and GLM estimation against exact misfit.
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The water rate GLM was
qwðtÞ ¼ 0 t < t2;

qwðtÞ ¼ at2 þ bt þ c t > t2.
ð13Þ
This provides us with 10 parameters for explicit reproduction of the oil and water rate curves. These parameter
values are obtained from fitting GLMs to the production data for available from the forward simulations car-
ried out for a limited number of models. Hence, for 246 sets of khigh, klow, h there are 246 corresponding sets of
10 parameters, which represent the simulated production for the models. Then, we can build and train an
MLP neural network to predict the GLM coefficients for any combination of the geomodel parameters. In
this study, we used separate MLPs for oil and water rates with the same 3 inputs. The MLP for oil rate
has 7 outputs (a1,b1,c1, t1,a2, a3,b3) and 40 hidden neurons. The MLP for water rate has 3 (a,b,c) outputs
and 20 hidden neurons. The water break through time t2 is common to both models and is derived from
the water rate GLM prediction when qw(t2) = 0. Both MLPs were trained using 246 data records as described
above. The MLP for water rate is smaller and took less training time than the oil rate MLP. A comparison of



Fig. 12. Comparison of misfit predictions with exact misfit for 3 MLP methods.

Fig. 13. Misfit surface for coarsely sampled surface plus MLP extended sampling.
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Fig. 14. MLP predictions of oil production for ensemble of GA models.

M. Christie et al. / Journal of Computational Physics 217 (2006) 143–158 155



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P quantiles FOPR with GA 6000 runs

P
qu

an
til

es
 F

O
P

R
 w

ith
 M

LP
 e

st
im

at
es

Fig. 15. Calibration curve of oil rate probability at the end of the history match period.
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the water rate predictions for direct simulation, the time series approach, and the GLM approach is shown in
Fig. 10, which shows that the shape of the curves generated by the GLM follow those from direct simulation
much more closely than the time-series approach.

Once the GLM coefficients can be determined for any model in the parameter space, the relevant misfit is
computed for the GLM estimated production. The estimated misfits are compared with the exact ones for the
direct MLP estimation method and estimation using MLP predicted coefficients for GLM production model
(see Fig. 11) The direct MLP misfit estimates feature better correlation, while the ones using GLM suffer from
a positive bias (although the least squares criterion used to fit the model is unbiased, we are looking at a small
part of the fitting region, namely the low misifit models, in this figure). This causes overestimation of the misfit
surface in general, though some relative features of the local misfit surface minima are in common for both
methods. A comparison of the methods along a cross section through the misfit surface near the true solution
is shown in Fig. 12.

4.4. Inference with MLP predictions

We compared our predictions of uncertainty in oil and water rates using the MLP with those obtained from
exact simulation of the flow equations shown in Fig. 9. To predict the confidence intervals, we used NAB
resampling to generate the posterior probabilities. We compared the results using the initial GA ensemble with
2000 (246 low misfit) models; the extended GA ensemble of 6000 (328 low misfit) models, and the ensemble
with an additional 969 models estimated using the MLP trained to estimate misfit directly. The additional
sampling is shown in Fig. 13, which plots the sampled points projected onto a 2D Voronoi diagram. The
increased resolution provided by both the direct estimation of misfit and calculation using a GLM can clearly
be seen.

The results of the Bayesian inference using these extended misfit surfaces are presented as p50 production
prediction curves bounded by p10, p90 confidence intervals. The truth case results are also shown. Fig. 14
shows that the confidence interval based on a limited ensemble of models generated by the initial 2000 GA
model runs is unrealistically narrow compared with the one based on the extended GA ensemble of 6000
or the full ensemble shown in Fig. 9. The confidence intervals from the GLM are wider than those predicted
from direct estimation of misfit, and overestimate the uncertainty.

The best results are those obtained with direct estimation of misfit using the MLP. These results demon-
strate good agreement with the extended GA sampling, matching the p50 prediction and providing a realistic
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range of uncertainty given by the p10, p90 interval. The good agreement is also illustrated by the calibration
curve shown in Fig. 15. In Fig. 15 the cumulative probability of the oil production at time step day 1095 (end
of history match period) is plotted the cumulative probability obtained from the MLP predictions. The result
shows excellent agreement (almost straight line) up to the 50% percentile, and reasonable agreement for higher
probabilities.

5. Conclusions

In many aspects of engineering design, we are faced with the task of quantifying the uncertainty in a pre-
diction for cases in which the simulations needed are very time consuming to run. Predictions of fluid flows in
oil reservoirs is an example of such a system.

In this paper, we have examined the use of a surrogate system, namely a neural network, to improve the
efficiency of our sampling of parameter space. Our goal is to seek model parameter values that match observed
system responses and to make inferences about system performance using all parameter values with an accept-
able degree of match.

Our approach is to use a stochastic sampling algorithm to make an initial exploration of parameter space.
We use the misfit values from this initial exploration to train a neural network. We then use this neural net-
work to guide our sampling, biasing our sampling to regions of good fit. Note that we must still continue some
sampling in regions where the neural network says that the fit will be bad if we wish to ensure that we can find
regions of good fit that have been missed in the initial exploration of parameter space.

The approach was demonstrated on a simple three parameter sampling problem that had proved a difficult
problem in previous studies. By using the neural network to guide sampling within the context of a stochastic
search algorithm, and running the expensive forward model principally in regions of good fit, we are able to
easily generated a significant number of models that match history well. If these models are then used in a
Bayesian inference step, a good forecast of uncertainty is obtained, comparable with the uncertainty envelope
generated with two orders of magnitude additional simulations in the original study.

The best results were obtained using direct prediction of misfit with a trained multi-layer perceptron. This
method provided an estimate of uncertainty that was very close to the estimate provide using a steady state
genetic algorithm which involved a significantly higher number of forward model evaluations.
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